Unique Factorization of Ideals in OK
نویسنده
چکیده
Let K be a number field and OK be the ring of algebraic integers. We discuss the unique factorization of elements of OK into irreducibles and its use in solving Diophantine equations. We then proceed to prove the existence of the unique factorization of ideals of OK into prime ideals.
منابع مشابه
The Conductor Ideal
Let O be an order in the number field K. When O 6= OK , O is Noetherian and onedimensional, but is not integrally closed, so it has at least one nonzero prime ideal that’s not invertible and O doesn’t have unique factorization of ideals. That is, some nonzero ideal in O does not have a unique prime ideal factorization. We are going to define a special ideal in O, called the conductor, that is c...
متن کاملModule MA3412: Integral Domains, Modules and Algebraic Integers
2 Integral Domains 12 2.1 Factorization in Integral Domains . . . . . . . . . . . . . . . . 12 2.2 Euclidean Domains . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Principal Ideal Domains . . . . . . . . . . . . . . . . . . . . . 16 2.4 Fermat’s Two Squares Theorem . . . . . . . . . . . . . . . . . 17 2.5 Maximal Ideals and Prime Ideals . . . . . . . . . . . . . . . . 20 2.6 Unique Fact...
متن کاملDecomposition of ideals into pseudo-irreducible ideals in amalgamated algebra along an ideal
Let $f : A rightarrow B$ be a ring homomorphism and $J$ an ideal of $B$. In this paper, we give a necessary and sufficient condition for the amalgamated algebra along an ideal $Abowtie^fJ$ to be $J$-Noetherian. Then we give a characterization for pseudo-irreducible ideals of $Abowtie^fJ$, in special cases.
متن کاملOn the order of a module
Abstract. Let (R,P) be a Noetherian unique factorization do-main (UFD) and M be a finitely generated R-module. Let I(M)be the first nonzero Fitting ideal of M and the order of M, denotedord_R(M), be the largest integer n such that I(M) ⊆ P^n. In thispaper, we show that if M is a module of order one, then either Mis isomorphic with direct sum of a free module and a cyclic moduleor M is isomorphi...
متن کاملApplications of Prime Factorization of Ideals in Number Fields
For a number fieldK, that is, a finite extension of Q, and a prime number p, a fundamental theorem of algebraic number theory implies that the ideal (p) ⊆ OK factors uniquely into prime ideals as (p) = p1 1 · · · p eg g . In this paper we explore different interpretations of this using the factorization of polynomials in finite and p-adic fields and Galois theory. In particular, we present some...
متن کامل